Publications
High profile papers
Deltas are important ecosystems, where freshwater meets the sea, and where people for centuries have been engaged in agriculture and fishing. Today, most of the deltas in the world are drowning because of increased human exploitation and a rise in the global sea level. In an article just published in Nature, a research team led by the Centre for Permafrost at the Department of Geosciences and Natural Resource Management at the University of Copenhagen has shown that deltas in Greenland, unlike most other deltas, are growing.
Mette Bendixen, Lars Lønsmann Iversen, Anders Anker Bjørk, Bo Elberling, Andreas Westergaard-Nielsen, Irina Overeem, Katy R. Barnhart, Shfaqat Abbas Khan, Jason E. Box, Jakob Abermann, Kirsty Langley & Aart Kroon (2017). Delta progradation in Greenland driven by increasing glacial mass loss Scientific. Nature, doi:10.1038/nature23873
A new study led by members of CENPERM, published in Scientific reports, Nature Publishing Group, show that sediments and nutrients can be transported surprisingly far in the marine environment.
It can affect how effectively the marine environment in the future can absorb carbon dioxide from the atmosphere. The results have been obtained by the researchers by use of a new particle camera developed in cooperation with the German research institution MARUM, Bremen. Read more about transport of sediments and nutrients .
Markussen, T.N., Elberling, B., Winter, C., Andersen, T.J. (2016). Flocculated meltwater particles control Arctic land-sea fluxes of labile iron. Scientific Reports 6, 24033.
Plant gasses possibly dampen the temperature rise in Greenland. Plants emit compounds to deter pests or attract pollinators, and as a side effect particles are formed when the compounds interact in the air. These particles can contribute to the formation of clouds, which reflect incoming solar radiation, and thus prevent solar heat from reaching the ground and warming it additionally.
Researchers from the University of Copenhagen have studied the effect of the imminent climate changes on the release of so-called “biogenic volatiles” to the atmosphere above Greenland. The sensational results are now being published in the prestigious scientific journal Nature Geoscience.
Read more about plant gasses
Kramshøj, M., Vedel-Petersen, I., Schollert, M., Rinnan, Å., Nymand J., Ro-Poulsen, H., Rinnan, R. (2016). Large increases in Arctic biogenic volatile emissions are a direct effect of warming. Nature Geoscience 9, 349-352.
CENPERM has contributed to a new study synthesizing shrub growth data from 37 sites across the arctic tundra to explore spatial patterns in climate growth relationships.
The novel analyses in this study demonstrate that (1) the sensitivity of shrub growth is heterogeneous across the tundra biome, with shrubs in European sites showing greater sensitivity than shrubs growing in North American sites, and (2) the growth sensitivity to climate is stronger in sites with high soil moisture and tall shrubs.
The climate sensitivity of shrub growth was greatest at sites located at the boundary between Low and High Arctic, where permafrost is thawing and most of the global permafrost soil carbon pool is stored. The observed variation in climate–shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.
Myers-Smith, I.H, Elmendorf, S.C., Beck, P.S.A., Wilmking, M., Hallinger, M., Blok, D., … Vellend, M. (2015). Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5,887-891.
We conclude that the ice-free area of northeast Greenland acts as a net sink of atmospheric methane, and suggest that this sink will probably be enhanced in a future warmer climate.
Arctic tundra soils serve as potentially important but poorly understood sinks of methane which act as an important greenhouse gas in the atmosphere. Improved knowledge on methane consumption in the dominating dry arctic soils is needed in order to understand the total methane exchange budget in the High Arctic which is conceptually biased as being a net methane emitter. In this CENPERM publication, we present measurements of rates of methane consumption in different soil and vegetation types within the Zackenberg Valley in northeast Greenland. The results show a clear picture of methane uptake in all non-water-saturated landforms studied with higher uptake rates in drier soils.Methane oxidation rates was sensitive to increasing temperatures, indicating that future arctic warming could increase the overall importance of the High Arctic methane sink.
Extrapolation of our measurements and known wetlands fluxes using satellite based land cover classification, we conclude that the ice-free area of northeast Greenland acts as a net sink of atmospheric methane, and is likely to be increased in a future warmer climate.
Jørgensen, C.J., Johansen, K.M.L., Westergaard-Nielsen, A., Elberling, B. (2015). High Arctic CH4 sink reverses the CH4 budget of Northeast Greenland. Nature Geoscience 8, 20-23.
Heat produced by Arctic soil microbes could enhance permafrost thaw and the release of carbon to the atmosphere, according to a paper published this week in Nature Climate Change.
As global temperatures rise and permafrost thaws, the breakdown of organic material in the soil is expected to accelerate. The process by which this decomposition produces heat and may accelerate further thawing is not well understood.
”We have quantified microbial heat production in samples of organic permafrost soils collected from six sites across Greenland to investigate whether enough heat can be produced by enhanced activity to affect the rate of soil decomposition” tells professor Bo Elberling.
The model simulations reveal a feedback loop between soil temperatures and carbon decomposition that could accelerate rates of permafrost thaw and microbial heat production within the next 50-100 years. The study shows that this process can degrade evidence of early human activity in the Arctic, preserved in organic middens — archaeological features buried in the permafrost. The feedback loop seem to be important for organic middens in particular, and the results presented suggest that actions are needed to preserve these features in the future.
Hollesen, J., Matthiesen, H., Møller, A.B., Elberling, .B (2015). Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nature Climate Change 5, 574-578.
Tundra ecosystems are undergoing rapid changes due to climatic changes, altering the vegetation composition and potentially destabilizing permafrost.
Decomposition of buried plant and animal remains in permafrost soils could lead to further climate warming by release of greenhouse gases carbon dioxide and methane. We performed an experiment in the tundra of Fareast Siberia, a region known for its enormous permafrost carbon stores, whereby we removed the dominant shrub species dwarf birch ( Betula nana) to assess the effects on permafrost thaw. Surprisingly, the removal of shrubs led to a rapid incremental increase in summer permafrost thaw depth over the six years of the experiment. This deeper thaw led to a melt of ground-ice and collapse of the tundra surface, turning the original shrub mounds plots into ponds with standing water. The rapid and substantial changes in thaw depth, hydrology and surface elevation dramatically altered the methane-balance from a source to a sink of methane, just five years after the start of the experiment. These results show that plants play a crucial role in the stabilization of permafrost. Our experimental perturbations of plant cover, which can occur naturally due to e.g. insect outbreaks, fungal infections or changes in reindeer grazing pressure, demonstrate the fragility of tundra ecosystem under a climate warming scenario that can modify the tundra carbon balance and thus feedback to global climate changes.
Nauta, A.L., Heijmans, M.M.P.D., Blok, D., Limpens, J., Elberling, B., Gallagher, A., Li, B., Petrov, R.E., Maximov, T.C., van Huissteden, J., Berendse, F. (2014). Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change 5, 67-70.
A group of CENPERM scientists lead by Director Bo Elberling has revealed the importance of soil water content for long-term degradation of organic matter in thawed permafrost soil. The data are published in Nature Climate Change and are important for long-term projections of carbon dioxide emission from thawed permafrost.
Elberling, B., Michelsen, A., Schädel, C., Schuur, E.A.G., Christiansen, H.H., Berg, L., Tamstorf, M.P., Sigsgaard, C. (2013). Long-term CO2 production following permafrost thaw. Nature Climate Change 3, 890-894.
Arctic vegetation is increasing in height and cover due to warming. New research published in Nature Climate Change shows that shrubs, grasses and forbs are getting taller while bare soil is reduced.
In the circumpolar study, changes in vegetation structure and composition from 1980 to 2010 was recorded in 158 sites across the tundra, and related to observed temperature changes.
Elmendorf S, Henry G, Hollister RD, Björk R, Boulanger-Lapointe N, Cooper E, Cornelissen H, Day T, Dorrepaal E, Elumeeva T, Gill M, Gould W, Harte J, Hik D, Hofgaard A, Johnson DR, Johnstone JF, Jónsdóttir IS, Jorgenson JS, Klanderud K, Klein J, Koh S, Kudo G, Lara M, Lévesque E, Magnússon B, May J, Mercado-Diaz J, Michelsen et al. (2012). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2, 453–457.
Zastruzny, S., Ingeman-Nielsen, T., Zhang, W. & Elberling, B (2023) Accelerated permafrost thaw and increased drainage in the active layer: Responses from experimental surface alteration. Cold Regions Science and Technology 212, 103899
https://doi.org/10.1016/j.coldregions.2023.103899
Yun, H. Zhu, Q., Tang, J., Zhang, W., Chen, D., Ciais, P., Wu, Q & Elberling*, B. (2023) Warming, permafrost thaw and increased nitrogen availability as drivers for plant composition and growth across the Tibetan Plateau. Soil Biology and Biochemistry 182, 109041.
Liu, Y., Hansen, B.U., Elberling, B., & Westergaard-Nielsen, A. (2023). Snow depth and the associated offset in ground temperatures in a landscape manipulated with snow-fences. Geoderma 438, 116632.
Xu, W., Frendrup, L.L., Michelsen, A., Elberling, B. and Ambus, P.L. (2023). Deepened snow in combination with summer warming increases growing season nitrous oxide emissions in an Arctic dry tundra but not wet tundra. Soil Biology & Biochemistry 180, 109013.
Stimmler, P., Goeckede, M., Elberling, B., Natali, S., Kuhry, P., Perron, N., Lacroix, F., Hugelius, G., Sonnentag, O., Strauss, J., Minions, C., Sommer, M., Schaller, J. (2023) Pan-Arctic soil element bioavailability estimations. Earth Syst. Sci. Data 15, 1059–1075.
Hansen, H.F.E. & Elberling, B. (2023) Spatial distribution of bioavailable inorganic nitrogen from thawing permafrost. Global Biogeochemical Cycles, 37, e2022GB007589.
Peer-reviewed international papers
Qiu, C., Ciais, P., Zhu, D., Guenet, B., Chang, J., Chaudhary, N., Kleinen, T., Müller, J., Xi, Y., Zhang, W., Ballantyne, A., Brewer, S. C., Brovkin, V., Charman, D. J., Gustafson, A., Gallego-Sala, A. V., Gasser, T., Holden, J., Joos, F., ... Wårlind, D. (2022). A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth, 5(1), 86-97.
https://doi.org/10.1016/j.oneear.2021.12.008
Xu, W., Elberling, B., Ambus, P. (2022). Fire increases soil nitrogen retention and alters nitrogen uptake patterns among dominant shrub species in an Arctic dry heath tundra. Science of the Total Environment, 807,150990. https://doi.org/10.1016/j.scitotenv.2021.150990
Yun, H., Tang, J., D’Imperio, L., Wang, X., Qu, Y., Liu, L., et al. (2022). Warming and increased respiration have transformed an alpine steppe ecosystem on the Tibetan Plateau from a carbon dioxide sink into a source. Journal of Geophysical Research: Biogeosciences, 127, e2021JG006406. https://doi.org/10.1029/2021JG006406
Peer-reviewed international papers
Baggesen, N., Li, T., Seco, R., Holst, T., Michelsen, A., & Rinnan, R. (2021). Phenological stage of tundra vegetation controls bidirectional exchange of BVOCs in a climate change experiment on a subarctic heath. Global Change Biology, 27(12), 2928-2944. https://doi.org/10.1111/gcb.15596
Dai, Y., Feng, L., Hou, X., & Tang, J. (2021). An automatic classification algorithm for submerged aquatic vegetation in shallow lakes using Landsat imagery. Remote Sensing of Environment, 260, [112459]. https://doi.org/10.1016/j.rse.2021.112459
Gao, H., Feng, Z., Zhang, T., Wang, Y., He, X., Li, H., Pan, X., Ren, Z., Chen, X., Zhang, W., & Duan, Z. (2021). Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections. Science of the Total Environment, [142774]. https://doi.org/10.1016/j.scitotenv.2020.142774
Kolstad, E., Michelsen, A. & Ambus, P.L. (2021). Nitrous oxide surface fluxes in a low Arctic heath: Effects of experimental warming along a natural snowmelt gradient. Soil Biology and Biochemistry, 160 [108346]. https://doi.org/10.1016/j.soilbio.2021.108346
Kropp, H., Loranty, M. M., Natali, S. M., Kholodov, A. L., Rocha, A. V., Myers-Smith, I., Abbot, B. W., Abermann, J., Blanc-Betes, E., Blok, D., Blume-Werry, G., Boike, J., Breen, A. L., Cahoon, S. M. P., Christiansen, C. T., Douglas, T. A., Epstein, H. E., Frost, G. V., Goeckede, M., ... Lund, M. (2021). Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 16(1), [015001]. https://doi.org/10.1088/1748-9326/abc994
Pascual, D., Åkerman, J., Becher, M., Callaghan, T. V., Christensen, T. R., Dorrepaal, E., Emanuelsson, U., Giesler, R., Hammarlund, D., Hanna, E., Hofgaard, A., Jin, H., Johansson, C., Jonasson, C., Klaminder, J., Karlsson, J., Lundin, E., Michelsen, A., Olefeldt, D., ... Johansson, M. (2021). The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study. Ambio, 50(2), 375–392. https://doi.org/10.1007/s13280-020-01381-1
Rousk, K., Pedersen, P. A., Prieme, A. & Michelsen, A. (2021). Extreme freeze-thaw cycles do not affect moss-associated nitrogen fixation across a temperature gradient, but affect nutrient loss from mosses. Acta Oecologica, 113, 103796.
https://doi.org/10.1016/j.actao.2021.103796
Ryde, I., Li, T., Rieksta, J., Dos Santos, B. M., Neilson, E. H. J., Gericke, O., Jepsen, J. U., Bork, L. R. H., Holm, H. S., & Rinnan, R. (2021). Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata). Tree Physiology. https://doi.org/10.1093/treephys/tpab023
Simin, T., Tang, J., Holst, T., & Rinnan, R. (2021). Volatile organic compound emission in tundra shrubs – Dependence on species characteristics and the near-surface environment. Environmental and Experimental Botany, 184, [104387]. https://doi.org/10.1016/j.envexpbot.2021.104387
Sjöberg, Y., Jan, A., Painter, S. L., Coon, E. T., Carey, M. P., O'donnell, J. A., & Koch, J. C. (2021). Permafrost promotes shallow groundwater flow and warmer headwater streams. Water Resources Research, 57(2), [e2020WR027463]. https://doi.org/10.1029/2020WR027463
Xu, W., Lambæk, A., Holm, S. S., Furbo-Halken, A., Elberling, B. & Ambus, P. L. (2021). Effects of experimental fire in combination with climate warming on greenhouse gas fluxes in Arctic tundra soils. Science of The Total Environment, 795 [148847]. https://doi.org/10.1016/j.scitotenv.2021.148847
Xu, W., Prieme, A., Cooper, E. J., Mörsdorf, M.A., Semenchuk, P., Elberling, B., Grogan,P. & Ambus, P. L. (2021). Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer. Soil Biology and Biochemistry, 160 [108356]. https://doi.org/10.1016/j.soilbio.2021.108356
Peer-reviewed international papers
Andersen, E. A. S., Michelsen, A., Fenger-nielsen, R., Hollesen, J., Ambus, P. L., & Elberling, B. (2020). Nitrogen isotopes reveal high N retention in plants and soil of old Norse and Inuit deposits along a wet-dry arctic fjord transect in Greenland. Plant and Soil. https://doi.org/10.1007/s11104-020-04683-1
Andresen, G. C., Lawrence, D.M., Wilson, C.J., McGuire, A. D., Koven, C., Schaefer, K., ... Zhang, W. (2020). Soil moisture and hydrology projections of the permafrost region – a model intercomparison. The Cryosphere, 14, 445–459. https://doi.org/10.5194/tc-14-445-2020
Chaudhary, N., Westermann, S., Lamba, S., Shurpali, N., Sannel, A.B.K., Schurgers, G., Miller, P.A. & Smith, B. (2020). Modelling past and future peatland carbon dynamics across the pan-Arctic. Global Change Biology, 26, 4119–4133. https://doi.org/10.1111/gcb.15099
Chen, J., Tang, J., & Yu, X. (2020). Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions. Environmental Pollution, 259, [113955]. https://doi.org/10.1016/j.envpol.2020.113955
Fenger‐Nielsen, R., Elberling, B., Kroon, A., Westergaard‐Nielsen, A., Matthiesen, H., Harmsen, H., Madsen, C. K., Stendel, M., & Hollesen, J. (2020). Arctic archaeological sites threatened by climate change: A regional multi‐threat assessment of sites in south‐west Greenland. Archaeometry. https://doi.org/10.1111/arcm.12593
Fouché, J., Christiansen, C.T., Lafrenière, M.J., Grogan, P., & Lamoureux, S.F. (2020). Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nature Communications 11, 4500. https://www.nature.com/articles/s41467-020-18331-w
Ghirardo, A., Lindstein, F., Koch, K., Buegger, F., Schloter, M., Albert, A., ... Rinnan, R. (2020). Origin of volatile organic compound emissions from subarctic tundra under global warming. Global Change Biology, 26(3), 1908-1925. https://doi.org/10.1111/gcb.14935
Hicks, L., Leizeaga, A., Rousk, K., Michelsen, A., & Rousk, J. (2020). Simulated rhizosphere deposits induce microbial N-mining that may accelerate shrubification in the subarctic. Ecology, 101(9), [e03094]. https://doi.org/10.1002/ecy.3094
Hicks, L., Rousk, K., Rinnan, R., & Rousk, J. (2020). Soil microbial responses to 28 Years of nutrient fertilization in a Subarctic Heath. Ecosystems, 23(5), 1107-1119. https://doi.org/10.1007/s10021-019-00458-7
Jung, J. Y., Michelsen, A., Kim, M., Nam, S., Schmidt, N. M., Jeong, S., ... Lee, Y. K. (2020). Responses of surface SOC to long-term experimental warming vary between different heath types in the high Arctic tundra. European Journal of Soil Science, 71(4), 752-767. https://doi.org/10.1111/ejss.12896
Kuhry, P., Barta, J., Blok, D., Elberling, B., Faucherre, S., Hugelius, G., ... Weiss, N. (2020). Lability classification of soil organic matter in the northern permafrost region. Biogeosciences, 17(2), 361-379. https://doi.org/10.5194/bg-17-361-2020
Lett, S., Teuber, L. M., Krab, E. J., Michelsen, A., Olofsson, J., Nilsson, M-C., Wardle, D. A., & Dorrepaal, E. (2020). Mosses modify effects of warmer and wetter conditions on tree seedlings at the alpine treeline. Global Change Biology, 26(10), 5754-5766. https://doi.org/10.1111/gcb.15256
Liu, N., Michelsen, A., & Rinnan, R. (2020). Vegetation and soil responses to added carbon and nutrients remain six years after discontinuation of long-term treatments. Science of the Total Environment, 722, [137885]. https://doi.org/10.1016/j.scitotenv.2020.137885
Liu, X., Wang, Z., Li, X., Rousk, K., & Bao, W. (2020). High nitrogen resorption efficiency of forest mosses. Annals of Botany, 125(4), 557-563. https://doi.org/10.1093/aob/mcz199
López-blanco, E., Jackowicz-korczynski, M., Mastepanov, M., Skov, K., Westergaard-nielsen, A., Williams, M., & Christensen, T. R. (2020). Multi-year data-model evaluation reveals the importance of nutrient availability over climate in arctic ecosystem C dynamics. Environmental Research Letters, 15(9), [094007]. https://doi.org/10.1088/1748-9326/ab865b
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., ... Zou, D. (2020). Reply to the comment: Northern Hemisphere permafrost extent: Drylands, glaciers and sea floor. Earth-Science Reviews, [103036]. https://doi.org/10.1016/j.earscirev.2019.103036
Oh, Y., Zhuang, Q., Liu, L., Welp, L. R., Lau, M. C. Y., Onstott, T. C., ... Elberling, B. (2020). Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic. Nature climate change, 10(4), 317-321. https://doi.org/10.1038/s41558-020-0734-z
Pascual, D., Åkerman, J., Becher, M., Callaghan, T. V., Christensen, T. R., Dorrepaal, E., Emanuelsson, U., Giesler, R., Hammarlund, D., Hanna, E., Hofgaard, A., Jin, H., Johansson, C., Jonasson, C., Klaminder, J., Karlsson, J., Lundin, E., Michelsen, A., Olefeldt, D., ... Rinnan, R., .... Tang, J., ... Johansson, M. (2020). The missing pieces for better future predictions in subarctic ecosystems: A Torneträsk case study. Ambio. https://doi.org/10.1007/s13280-020-01381-1
Pedersen, E.P., Elberling, B., & Michelsen, A. (2020). Foraging deeply: Depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the High Arctic. Global Change Biology, https://doi.org/10.1111/gcb.15306
Prendin, A. L., Carrer, M., Karami, M., Hollesen, J., Pedersen, N. B., Pividori, M., ... Westergaard-Nielsen, A., Elberling, B., & Normand, S. (2020). Immediate and carry-over effects of insect outbreaks on vegetation growth in West Greenland assessed from cells to satellite. Journal of Biogeography, 47(1), 87-100. https://doi.org/10.1111/jbi.13644
Rasmussen, L. H., Michelsen, A., Ladegaard-Pedersen, P., Nielsen, C. S., & Elberling, B. (2020). Arctic soil water chemistry in dry and wet tundra subject to snow addition, summer warming and herbivory simulation. Soil Biology and Biochemistry, 141, [107676]. https://doi.org/10.1016/j.soilbio.2019.107676
Ravn, N. R., Elberling, B., & Michelsen, A. (2020). Arctic soil carbon turnover controlled by experimental snow addition, summer warming and shrub removal. Soil Biology and Biochemistry, 142, [107698]. https://doi.org/10.1016/j.soilbio.2019.107698
Rinnan, R., & Albers, C. N. (2020). Soil Uptake of Volatile Organic Compounds: Ubiquitous and Underestimated? Journal of Geophysical Research: Biogeosciences, 125(6), [e2020JG005773]. https://doi.org/10.1029/2020JG005773
Rousk, K., & Rousk, J. (2020). The responses of moss-associated nitrogen fixation and belowground microbial community to chronic Mo and P supplements in subarctic dry heaths. Plant and Soil, 451(1-2), 261-276. https://doi.org/10.1007/s11104-020-04492-6
Salazar, A., Rousk, K., Jónsdóttir, I. S., Bellenger, J-P., & Andrésson, Ó. S. (2020). Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis. Ecology, 101(2), [e02938]. https://doi.org/10.1002/ecy.2938
Sarkar, C., Guenther, A. B., Park, J. H., Seco, R., Alves, E., Batalha, S., ... Vega, O. (2020). PTR-TOF-MS eddy covariance measurements of isoprene and monoterpene fluxes from an eastern Amazonian rainforest. Atmospheric Chemistry and Physics, 20(12), 7179-7191. https://doi.org/10.5194/acp-20-7179-2020
Schostag, M. D., Albers, C. N., Jacobsen, C. S., & Priemé, A. (2020). Low Turnover of Soil Bacterial rRNA at Low Temperatures. Frontiers in Microbiology, 11, [962]. https://doi.org/10.3389/fmicb.2020.00962
Sjöberg, Y., Siewert, M. B., Rudy, A. C. A., Paquette, M., Bouchard, F., Malenfant-Lepage, J., & Fritz, M. (2020). Hot trends and impact in permafrost science. Permafrost and Periglacial Processes. https://doi.org/10.1002/ppp.2047
Sukstorf, F. N., Bennike, O., & Elberling, B. (2020). Glacial Rock Flour as Soil Amendment in Subarctic Farming in South Greenland. Land, [198]. https://doi.org/10.3390/land9060198
Thomas, H. J. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Kattge, J., Diaz, S., ... Elberling, B., Michelsen, A., … de Vries, F. T. (2020). Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 11(1), [1351]. https://doi.org/10.1038/s41467-020-15014-4
Wang, P., D'Imperio, L., Biersma, E. M., Ranniku, R., Xu, W., Tian, Q., ... Ambus, P. & Elberling, B. (2020). Combined effects of glacial retreat and penguin activity on soil greenhouse gas fluxes on South Georgia, sub-Antarctica. The Science of the Total Environment, 718, [135255]. https://doi.org/10.1016/j.scitotenv.2019.135255
Westergaard-Nielsen, A., Balstrøm, T., Treier, U., Normand, S., & Elberling, B. (2020). Estimating meltwater retention and associated nitrate redistribution during snowmelt in an Arctic tundra landscape. Environmental Research Letters, 15(3), [034025]. https://doi.org/10.1088/1748-9326/ab57b1
Wester-Larsen, L., Kramshøj, M., Albers, C. N., & Rinnan, R. (2020). Biogenic Volatile Organic Compounds in Arctic soil: A field study of concentrations and variability with vegetation cover. Journal of Geophysical Research: Biogeosciences, 125(7), [e2019JG005551]. https://doi.org/10.1029/2019JG005551
Peer-reviewed international papers
Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu, M., ... Zhang, W. (2019). Trends of intense cyclone activity in the Arctic from reanalyses data and regional climate models (Arctic-CORDEX). IOP Conference Series: Earth and Environmental Science, 231, [012003]. https://doi.org/10.1088/1755-1315/231/1/012003
Akperov, M., Rinke, A., Mokhov, I. I., Semenov, V. A., Parfenova, M. R., Matthes, H., ... Zhang, W. (2019). Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global and Planetary Change, 182, [103005]. https://doi.org/10.1016/j.gloplacha.2019.103005
Akther, H., & Rousk, K. (2019). High heavy metal load does not inhibit nitrogen fixation in moss-cyanobacteria associations. Ecotoxicology, 28(10), 1169-1176. https://doi.org/10.1007/s10646-019-02127-w
Bendixen, M., Overeem, I., Rosing, M. T., Bjørk, A. A., Kjær, K. H., Kroon, A., ... Iversen, L. L. (2019). Promises and perils of sand exploitation in Greenland. Nature Sustainability, 2, 98-104. https://doi.org/10.1038/s41893-018-0218-6
Buchwal, A., Weijers, S., Blok, D., & Elberling, B. (2019). Temperature sensitivity of willow dwarf shrub growth from two distinct High Arctic sites. International Journal of Biometeorology, 63(2), 167-181. https://doi.org/10.1007/s00484-018-1648-6
Chamindu Deepagoda, T. K. K., Clough, T. J., Thomas, S. M., Balaine, N., & Elberling, B. (2019). Density Effects on Soil-Water Characteristics, Soil-Gas Diffusivity, and Emissions of N2O and N2 from a Re-packed Pasture Soil. Soil Science Society of America Journal, 83(1), 118-125. https://doi.org/10.2136/sssaj2018.01.0048
Fenger-Nielsen, R., Hollesen, J., Matthiesen, H., Andersen, E. A. S., Westergaard-Nielsen, A., Harmsen, H., ... Elberling, B. (2019). Footprints from the past: the influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Science of the Total Environment, 654, 895-905. https://doi.org/10.1016/j.scitotenv.2018.11.018
Goth, A., Michelsen, A., & Rousk, K. (2019). Railroad derived nitrogen and heavy metal pollution does not affect nitrogen fixation associated with mosses and lichens at a tundra site in Northern Sweden. Environmental Pollution, (247), 857-865. https://doi.org/10.1016/j.envpol.2019.01.101
Hollesen, J., Matthiesen, H., Fenger-Nielsen, R., Abermann, J., Westergaard-Nielsen, A., & Elberling, B. (2019). Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Scientific Reports, 9, [9097]. https://doi.org/10.1038/s41598-019-45200-4
Kramshøj, M., Albers, C. N., Svendsen, S. H., Björkman, M. P., Lindwall, F., Björk, R. G., & Rinnan, R. (2019). Volatile emissions from thawing permafrost soils are influenced by meltwater drainage conditions. Global Change Biology, 25(5), 1704-1716. https://doi.org/10.1111/gcb.14582
Li, T., Holst, T., Michelsen, A., & Rinnan, R. (2019). Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. Nature Plants, 5(6), 568-574. https://doi.org/10.1038/s41477-019-0439-3
Morel, X., Decharme, B., Delire, C., Krinner, G., Lund, M., Hansen, B. U., & Mastepanov, M. (2019). A New Process-Based Soil Methane Scheme: Evaluation Over Arctic Field Sites With the ISBA Land Surface Model. Journal of Advances in Modeling Earth Systems, 11(1), 293-326. https://doi.org/10.1029/2018MS001329
Mosbacher, J. B., Michelsen, A., Stelvig, M., Hjermstad-Sollerud, H., & Schmidt, N. M. (2019). Muskoxen Modify Plant Abundance, Phenology, and Nitrogen Dynamics in a High Arctic Fen. Ecosystems, 22(5), 1095-1107. https://doi.org/10.1007/s10021-018-0323-4
Mörsdorf, M. A., Baggesen, N. S., Yoccoz, N. G., Michelsen, A., Elberling, B., Ambus, P. L., & Cooper, E. J. (2019). Deepened winter snow significantly influences the availability and forms of nitrogen taken up by plants in High Arctic tundra. Soil Biology & Biochemistry, 135, 222-234. https://doi.org/10.1016/j.soilbio.2019.05.009
Natali, S. M., Watts, J. D., Rogers, B. M., Potter, S., Ludwig, S. M., Selbmann, A-K., ... Elberling, B., Friborg, T., Michelsen, A., … Zona, D. (2019). Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 9, 852-857. https://doi.org/10.1038/s41558-019-0592-8
Nielsen, T. F., Ravn, N. M. R., & Michelsen, A. (2019). Increased CO2 efflux due to long-term experimental summer warming and litter input in subarctic tundra – CO2 fluxes at snowmelt, in growing season, fall and winter. Plant and Soil, 444(1-2), 365-382. https://doi.org/10.1007/s11104-019-04282-9
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., ...Elberling, B., Westergaard-Nielsen, A., … Zou, D. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1 km2 scale. Earth-Science Reviews, 193, 299-316. https://doi.org/10.1016/j.earscirev.2019.04.023
Phillips, C. A., Elberling, B., & Michelsen, A. (2019). Soil Carbon and Nitrogen Stocks and Turnover Following 16 Years of Warming and Litter Addition. Ecosystems, 22(1), 110-124. https://doi.org/10.1007/s10021-018-0256-y
Prevéy, J. S., Rixen, C., Rüger, N., Høye, T. T., Bjørkman, A. D., Myers-Smith, I. H., ...Elberling, B., … Wipf, S. (2019). Warming shortens flowering seasons of tundra plant communities. Nature Ecology & Evolution, 3(1), 45-52. https://doi.org/10.1038/s41559-018-0745-6
Schaller, J., Faucherre, S., Joss, H., Obst, M., Goeckede, M., Planer-Friedrich, B., ... Elberling, B. (2019). Silicon increases the phosphorus availability of Arctic soils. Scientific Reports, 9(1), [449].
https://doi.org/10.1038/s41598-018-37104-6
Schostag, M., Priemé, A., Jacquiod, S., Russel, J., Ekelund, F., & Jacobsen, C. S. (2019). Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil. ISME Journal, 13, 1345-1359. https://doi.org/10.1038/s41396-019-0351-x
Simonsen, A. M. T., Pedersen, K. B., Jensen, P. E., Elberling, B., & Bach, L. (2019). Lability of toxic elements in Submarine Tailings Disposal: The relationship between metal fractionation and metal uptake by sandworms (Alitta virens). Science of the Total Environment, 696, [133903]. https://doi.org/10.1016/j.scitotenv.2019.133903
St Pierre, K. A., Danielsen, B. K., Hermesdorf, L., D'Imperio, L., Iversen, L. L., & Elberling, B. (2019). Drivers of net methane uptake across Greenlandic dry heath tundra landscapes. Soil Biology and Biochemistry, 138, [107605]. https://doi.org/10.1016/j.soilbio.2019.107605
Tang, J., Schurgers, G., & Rinnan, R. (2019). Process understanding of soil BVOC fluxes in natural ecosystems: a review. Reviews of Geophysics, 57(3), 966-986. https://doi.org/10.1029/2018RG000634
Thomas, H. J. D., Myers-Smith, I. H., Bjorkman, A. D., Elmendorf, S. C., Blok, D., Cornelissen, J. H. C., ...Michelsen, A., … van Bodegom, P. M. (2019). Traditional plant functional groups explain variation in economic but not size-related traits across the tundra biome. Global Ecology and Biogeography, 28(2), 78-95. https://doi.org/10.1111/geb.12783
Tsuruta, A., Aalto, T., Backman, L., Krol, M. C., Peters, W., Lienert, S., ... Gomez-Pelaez, A. J. (2019). Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system. Tellus, Series B: Chemical and Physical Meteorology, 71, [1445379]. https://doi.org/10.1080/16000889.2018.1565030
Voříšková, J., Elberling, B., & Priemé, A. (2019). Fast response of fungal and prokaryotic communities to climate change manipulation in two contrasting tundra soils. Environmental Microbiomes, 14(1), [6]. https://doi.org/10.1186/s40793-019-0344-4
Wang, P., D'Imperio, L., Liu, B., Tian, Q., Jia, Z., Ambus, P., ... Elberling, B. (2019). Sea animal activity controls CO2 , CH4 and N2O emission hotspots on South Georgia, sub-Antarctica. Soil Biology and Biochemistry, 132, 174-186. https://doi.org/10.1016/j.soilbio.2019.02.002
Wu, M., Wu, J., Tan, X., Huang, J., Jansson, P-E., & Zhang, W. (2019). Simulation of dynamical interactions between soil freezing/thawing and salinization for improving water management in cold/arid agricultural region. Geoderma, 338, 325-342. https://doi.org/10.1016/j.geoderma.2018.12.022
Zhang, W., Jansson, P. E., Sigsgaard, C., McConnell, A., Jammet, M. M., Westergaard-Nielsen, A., Friborg, T., Michelsen, A., Elberling, B. (2019). Model-data fusion to assess year-round CO2 fluxes for an arctic heath ecosystem in West Greenland (69°N). Agricultural and Forest Meteorology, 272-273, 176-186. https://doi.org/10.1016/j.agrformet.2019.02.021
Peer-reviewed international papers
Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu, M., ... Zhang, W. (2018). Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX). Journal of Geophysical Research, 123(5), 2537-2554. https://doi.org/10.1002/2017JD027703
Albers, C. N., Kramshøj, M., & Rinnan, R. (2018). Rapid mineralization of biogenic volatile organic compounds in temperate and Arctic soils. Biogeosciences, 15(11), 3591-3601. https://doi.org/10.5194/bg-15-3591-2018
Barthelemy, H., Stark, S., Michelsen, A., & Olofsson, J. (2018). Urine is an important nitrogen source for plants irrespective of vegetation composition in an Arctic tundra: insights from a 15N-enriched urea tracer experiment. Journal of Ecology, 106(1), 367-378. https://doi.org/10.1111/1365-2745.12820
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Rüger, N., Beck, P. S. A., ... Weiher, E. (2018). Plant functional trait change across a warming tundra biome. Nature, 562(7725), 57-62. https://doi.org/10.1038/s41586-018-0563-7
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Thomas, H. J. D., Alatalo, J. M., ... Zamin, T. (2018). Tundra Trait Team: A database of plant traits spanning the tundra biome. Global Ecology and Biogeography, 27(12), 1402-1411. https://doi.org/10.1111/geb.12821
Blok, D., Faucherre, S., Banyasz, I., Rinnan, R., Michelsen, A., & Elberling, B. (2018). Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra. Global Change Biology, 24(6), 2660-2672. https://doi.org/10.1111/gcb.14017
Cable, S., Christiansen, H. H., Westergaard-Nielsen, A., Kroon, A., & Elberling, B. (2018). Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans. Geomorphology, 303, 504-523. https://doi.org/10.1016/j.geomorph.2017.11.003
Cable, S., Elberling, B., & Kroon, A. (2018). Holocene permafrost history and cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard. Boreas, 47(2), 423-442. https://doi.org/10.1111/bor.12286
Crowther, T.W., Machmuller, M.B., Carey, J.C., Allison, S.D., Blair, J.M., Bridgham, S.D. Burton, A.J., Dijkstra, F.A., Elberling, B., Estiarte, M., Larsen, K.S., Laudon, H., Lupascu, M., Marhan, S., Mohan, J., Niu, S., Peñuelas, J., Schmidt, I.K., Templer, P.H., Kröel-Dulay, G., Frey, S., Bradford. M.A. (2018). Predicting soil carbon loss with warming – a reply. Nature, 554, E7-8. DOI: 10.1038/nature25746
D'Imperio, L., Arndal, M. F., Nielsen, C. S., Elberling, B., & Schmidt, I. K. (2018). Fast Responses of Root Dynamics to Increased Snow Deposition and Summer Air Temperature in an Arctic Wetland. Frontiers in Plant Science, 9, [1258]. https://doi.org/10.3389/fpls.2018.01258
Faucherre, S., Jørgensen, C. J., Blok, D., Weiss, N., Siewert, M. B., Bang-Andreasen, T., ... Elberling, B. (2018). Short and Long-Term Controls on Active Layer and Permafrost Carbon Turnover Across the Arctic. Journal of Geophysical Research, 123(2), 372-390. https://doi.org/10.1002/2017JG004069
Hasholt, B., van As, D., Mikkelsen, A. B., Mernild, S. H., & Yde, J. C. (2018). Observed sediment and solute transport from the Kangerlussuaq sector of the Greenland Ice Sheet (2006–2016). Arctic, Antarctic, and Alpine Research, 50(1), [ e1433789]. https://doi.org/10.1080/15230430.2018.1433789
Hollesen, J., Callanan, M., Dawson, T., Fenger-Nielsen, R., Friesen, T. M., Jensen, A. M., ... Rockman, M. (2018). Climate change and the deteriorating archaeological and environmental archives of the Arctic. Antiquity, 92(363), 573-586. https://doi.org/10.15184/aqy.2018.8
Jacobsen, C. S., Nielsen, T. K., Vester, J. K., Stougaard, P., Nielsen, J. L., Voriskova, J., ... Bælum, J. (2018). Inter-laboratory testing of the effect of DNA blocking reagent G2 on DNA extraction from low-biomass clay samples. Scientific Reports, 8, 1-6. [5711]. https://doi.org/10.1038/s41598-018-24082-y
Karami, M., Westergaard-Nielsen, A., Normand, S., Treier, U. A., Elberling, B., & Hansen, B. U. (2018). A phenology-based approach to the classification of Arctic tundra ecosystems in Greenland. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 518-529. https://doi.org/10.1016/J.ISPRSJPRS.2018.11.005
Kramshoj, M., Albers, C. N., Holst, T., Holzinger, R., Elberling, B., & Rinnan, R. (2018). Biogenic volatile release from permafrost thaw is determined by the soil microbial sink. Nature Communications, 9, [3412]. https://doi.org/10.1038/s41467-018-05824-y
Limoges, A., Ribeiro, S., Weckström, K., Heikkilä, M., Zamelczyk, K., Andersen, T. J., ... Seidenkrantz, M-S. (2018). Linking the Modern Distribution of Biogenic Proxies in High Arctic Greenland Shelf Sediments to Sea Ice, Primary Production, and Arctic-Atlantic Inflow. Journal of Geophysical Research: Biogeosciences, 123(3), 760-786. https://doi.org/10.1002/2017JG003840
Lopez-Blanco, E., Lund, M., Christensen, T. R., Tamstorf, M. P., Smallman, T. L., Slevin, D., ... Williams, M. (2018). Plant Traits are Key Determinants in Buffering the Meteorological Sensitivity of Net Carbon Exchanges of Arctic Tundra. Journal of Geophysical Research: Biogeosciences, 123(9), 2675-2694. https://doi.org/10.1029/2018JG004386
Metcalfe, D. B., Hermans, T. D. G., Ahlstrand, J., Becker, M., Berggren, M., Bjork, R. G., ...Tang, J., … Abdi, A. M. (2018). Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution, 2(9), 1443-1448. https://doi.org/10.1038/s41559-018-0612-5
Müller, O., Bang-Andreasen, T., White, R. A., Elberling, B., Taş, N., Kneafsey, T., ... Øvreås, L. (2018). Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environmental Microbiology, 20(12), 4328-4342. https://doi.org/10.1111/1462-2920.14348
Nakhavali, M., Friedlingstein, P., Lauerwald, R., Tang, J., Chadburn, S., Camino-Serrano, M., ... Gielen, B. (2018). Representation of dissolved organic carbon in the JULES land surface model (vn4.4_JULES-DOCM). Geoscientific Model Development, 11(2), 593-609. https://doi.org/10.5194/gmd-11-593-2018
Palmtag, J., Cable, S., Christiansen, H. H., Hugelius, G., & Kuhry, P. (2018). Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland. Cryosphere, 12(5), 1735-1744. https://doi.org/10.5194/tc-12-1735-2018
Pedersen, E. P., Michelsen, A., & Elberling, B. (2018). In situ CH4 oxidation inhibition and 13CH4 labeling reveal methane oxidation and emission patterns in a subarctic heath ecosystem. Biogeochemistry, 138(2), 197-213. https://doi.org/10.1007/s10533-018-0441-2
Rasmussen, L. H., Zhang, W., Hollesen, J., Cable, S., Christiansen, H. H., Jansson, P-E., & Elberling, B. (2018). Modelling present and future permafrost thermal regimes in Northeast Greenland. Cold Regions Science and Technology, 146, 199-213. https://doi.org/10.1016/j.coldregions.2017.10.011
Rousk, J., & Rousk, K. (2018). Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest. Environmental Pollution, 240, 297–305. https://doi.org/10.1016/j.envpol.2018.04.087
Rousk, K., Sørensen, P. L., & Michelsen, A. (2018). What drives biological nitrogen fixation in high arctic tundra: Moisture or temperature? Ecosphere (Washington, D.C.), 9(2), [e02117]. https://doi.org/10.1002/ecs2.2117
Rousk, K., Vestergård, M., & Christensen, S. (2018). Are nitrous oxide emissions and nitrogen fixation linked in temperate bogs? Soil Biology & Biochemistry, 123, 74-79. https://doi.org/10.1016/j.soilbio.2018.05.002
Schmidt, N. M., Mosbacher, J. B., Vesterinen, E. J., Roslin, T., & Michelsen, A. (2018). Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods. Oecologia, 187(3), 689-699. https://doi.org/10.1007/s00442-018-4147-x
Scott, D. L., Bradley, R. L., Bellenger, J-P., Houle, D., Gundale, M. J., Rousk, K., & DeLuca, T. H. (2018). Anthropogenic deposition of heavy metals and phosphorus may reduce biological N2 fixation in boreal forest mosses. Science of the Total Environment, 630, 203-210. https://doi.org/10.1016/j.scitotenv.2018.02.192
Simonsen, A. M. T., Pedersen, K. B., Sternal, B., Junttila, J., & Elberling, B. (2018). Applying chemometrics to determine dispersion of mine tailings-affected sediments from submarine tailings disposal in Bøkfjorden. Water, Air and Soil Pollution, 229, [206]. https://doi.org/10.1007/s11270-018-3868-0
Svendsen, S. H., Prieme, A., Voriskova, J., Kramshoj, M., Schostag, M. D., Jacobsen, C. S., & Rinnan, R. (2018). Emissions of biogenic volatile organic compounds from arctic shrub litter are coupled with changes in the bacterial community composition. Soil Biology & Biochemistry, 120, 80-90. https://doi.org/10.1016/j.soilbio.2018.02.001
Tang, J., Valolahti, H. M., Kivimäenpää, M., Michelsen, A., & Rinnan, R. (2018). Acclimation of Biogenic Volatile Organic Compound Emission From Subarctic Heath Under Long-Term Moderate Warming. Journal of Geophysical Research: Biogeosciences, 123(1), 95-105. https://doi.org/10.1002/2017JG004139
Tang, J., Yurova, A., Schurgers, G., Miller, P. A., Olin, S., Smith, B., ... Poska, A. (2018). Drivers of dissolved organic carbon export in a subarctic catchment: Importance of microbial decomposition, sorption-desorption, peatland and lateral flow. Science of the Total Environment, 622-623, 260-274. https://doi.org/10.1016/j.scitotenv.2017.11.252
van As, D., Hasholt, B., Ahlstrøm, A. P., Box, J. E., Cappelen, J., Colgan, W., ... van den Broeke, M. R. (2018). Reconstructing Greenland Ice Sheet meltwater discharge through the Watson River (1949-2017). Arctic, Antarctic, and Alpine Research, 50(1), [e1433799]. https://doi.org/10.1080/15230430.2018.1433799
Van Gestel, N., Shi, Z., Van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., ... Michelsen, A., … Hungate, B. A. (2018). Predicting soil carbon loss with warming: [ARISING FROM T. W. Crowther et al. Nature, 540, 104–108 (2016); doi:10.1038/nature20150]. Nature, 554(7693), E4-E8. https://doi.org/10.1038/nature25745
Westergaard-Nielsen, A., Karami, M., Hansen, B. U., Westermann, S., & Elberling, B. (2018). Contrasting temperature trends across the ice-free part of Greenland. Scientific Reports, 8, [1586]. https://doi.org/10.1038/s41598-018-19992-w
Yan, Y., Tang, J., & Pilesjo, P. (2018). A combined algorithm for automated drainage network extraction from digital elevation models. Hydrological Processes, 32(10), 1322-1333. https://doi.org/10.1002/hyp.11479
Zhang, W., Jansson, P-E., Schurgers, G., Hollesen, J., Lund, M., Abermann, J., & Elberling, B. (2018). Process-Oriented Modeling of a High Arctic Tundra Ecosystem: Long-Term Carbon Budget and Ecosystem Responses to Interannual Variations of Climate. Journal of Geophysical Research: Biogeosciences, 123(4), 1178-1196. https://doi.org/10.1002/2017JG003956
Zhang, W., Miller, P. A., Jansson, C., Samuelsson, P., Mao, J., & Smith, B. (2018). Self-Amplifying Feedbacks Accelerate Greening and Warming of the Arctic. Geophysical Research Letters, 45(14), 7102-7111. https://doi.org/10.1029/2018GL077830
Peer-reviewed international papers
Abermann, J., Hansen, B., Lund, M., Wacker, S., Karami, M., & Cappelen, J. (2017). Hotspots and key periods of Greenland climate change during the past six decades. Ambio, 46(Suppl. 1), 3-11. https://doi.org/10.1007/s13280-016-0861-y
Alatalo, M., J., K. Jägerbrand, A., Juhanson, J., Michelsen, A., & Ľuptáčik, P. (2017). Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities. Scientific Reports, 7, [44489 ]. https://doi.org/10.1038/srep44489
Albers, C. N., Jacobsen, O. S., Flores, E. M. M., & Johnsen, A. R. (2017). Arctic and Subarctic Natural Soils Emit Chloroform and Brominated Analogues by Alkaline Hydrolysis of Trihaloacetyl Compounds. Environmental Science & Technology (Washington), 51(11), 6131-6138. https://doi.org/10.1021/acs.est.7b00144
Bang-Andreasen, T., Nielsen, J. T., Voriskova, J., Heise, J., Rønn, R., Kjøller, R., ... Jacobsen, C. S. (2017). Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Frontiers in Microbiology, 8, [1400]. https://doi.org/10.3389/fmicb.2017.01400
Bang-Andreasen, T., Schostag, M. D., Priemé, A., Elberling, B., & Jacobsen, C. S. (2017). Potential microbial contamination during sampling of permafrost soil assessed by tracers. Scientific Reports, 7, [43338]. https://doi.org/10.1038/srep46006
Bendixen, M., & Kroon, A. (2017). Conceptualizing delta forms and processes in Arctic coastal environments. Earth Surface Processes and Landforms, 42(8), 1227–1237. https://doi.org/10.1002/esp.4097
Bendixen, M., Iversen, L. L., & Overeem, I. (2017). Greenland: Build an economy on sand. Science, 358(6365), 879. https://doi.org/10.1126/science.aar3388
Bendixen, M., Iversen, L. L., Bjork, A. A., Elberling, B., Westergaard-Nielsen, A., Overeem, I., ... Kroon, A. (2017). Delta progradation in Greenland driven by increasing glacial mass loss. Nature, 550, 101-104. https://doi.org/10.1038/nature23873
Cameron, K. A., Stibal, M., Chrismas, N., Box, J. E., & Jacobsen, C. S. (2017). Nitrate addition has minimal short-term impacts on greenland ice sheet supraglacial prokaryotes. Environmental Microbiology Reports, 9(2), 144-150. https://doi.org/10.1111/1758-2229.12510
Cameron, K. A., Stibal, M., Hawkings, J. R., Mikkelsen, A. P. B., Telling, J., Kohler, T. J., ... Jacobsen, C. S. (2017). Meltwater export of prokaryotic cells from the Greenland ice sheet. Environmental Microbiology, 19(2), 524-534. https://doi.org/10.1111/1462-2920.13483
Cameron, K. A., Stibal, M., Olsen, N. S., Mikkelsen, A. B., Elberling, B., & Jacobsen, C. S. (2017). Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments. Microbial Ecology, 74(1), 6-9. https://doi.org/10.1007/s00248-016-0926-2
Chadburn, S. E., Krinner, G., Porada, P., Bartsch, A., Beer, C., Marchesini, L. B., ... Burke, E. J. (2017). Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences, 14(22), 5143-5169. https://doi.org/10.5194/bg-14-5143-2017
Christiansen, C. T., Haugwitz, M. S., Priemé, A., Nielsen, C. S., Elberling, B., Michelsen, A., ... Blok, D. (2017). Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra. Global Change Biology, 23(1), 406-420. https://doi.org/10.1111/gcb.13362
Dahl, M. B., Priemé, A., Brejnrod, A. D., Brusvang, P., Lund, M., Nymand, J., ... Haugwitz, M. S. (2017). Warming, shading and a moth outbreak reduce tundra carbon sink strength dramatically by changing plant cover and soil microbial activity. Scientific Reports, 7, [16035]. https://doi.org/10.1038/s41598-017-16007-y
D'Imperio, L., Nielsen, C. S., Westergaard-Nielsen, A., Michelsen, A., & Elberling, B. (2017). Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH4 budget. Global Change Biology, 23(2), 966-976. https://doi.org/10.1111/gcb.13400
Georgiadis, P., Nielsen, A. T., Stupak, I., Kepfer Rojas, S., Zhang, W., Bastos, R. P., & Raulund-Rasmussen, K. (2017). Fertilization effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar. Forest Ecology and Management, 397, 18-26. https://doi.org/10.1016/j.foreco.2017.04.020
Gilbert, G. L., Cable, S., Thiel, C., Christiansen, H. H., & Elberling, B. (2017). Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland. Cryosphere, 11(3), 1265-1282. https://doi.org/10.5194/tc-11-1265-2017
Hillenbrand, C-D., Smith, J. A., Hodell, D. A., Greaves, M., Poole, C. R., Kender, S., ... Kuhn, G. (2017). West Antarctic Ice Sheet retreat driven by Holocene warm water incursions. Nature, 547(7661), 43-48. https://doi.org/10.1038/nature22995
Hollesen, J., Matthiesen, H., & Elberling, B. (2017). The Impact of Climate Change on an Archaeological Site in the Arctic. Archaeometry, 59(6), 1175-1189. https://doi.org/10.1111/arcm.12319
Jammet, M., Dengel, S., Kettner, E., Parmentier, F-J. W., Wik, M., Crill, P., & Friborg, T. (2017). Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences, 14(22), 5189-5216. https://doi.org/10.5194/bg-14-5189-2017
Karami, M., Hansen, B., Westergaard-Nielsen, A., Abermann, J., Lund, M., Schmidt, N. M., & Elberling, B. (2017). Vegetation phenology gradients along the west and east coasts of Greenland from 2001 to 2015. Ambio, 46(Suppl. 1), 94-105. https://doi.org/10.1007/s13280-016-0866-6
Kroon, A., Abermann, J., Bendixen, M., Lund, M., Sigsgaard, C., Skov, K., & Hansen, B. U. (2017). Deltas, freshwater discharge, and waves along the Young Sound, NE Greenland. Ambio, 46(Suppl. 1), 132-145. https://doi.org/10.1007/s13280-016-0869-3
Ladegaard-Pedersen, P., Sigsgaard, C., Kroon, A., Abermann, J., Skov, K., & Elberling, B. (2017). Suspended sediment in a high-Arctic river: an appraisal of flux estimation methods. Science of the Total Environment, 580, 582-592. https://doi.org/10.1016/j.scitotenv.2016.12.006
López-Blanco, E., Lund, M., Williams, M., P. Tamstorf, M., Westergaard-Nielsen, A., Exbrayat, J-F., ... Christensen, T. R. (2017). Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance. Biogeosciences, 14, 4467-4483. https://doi.org/10.5194/bg-2016-506
Lund, M., Raundrup, K., Westergaard-Nielsen, A., López-Blanco, E., Nymand, J., & Aastrup, P. (2017). Larval outbreaks in West Greenland: instant and subsequent effects on tundra ecosystem productivity and CO2 exchange. Ambio, 46(Suppl. 1), 26-38. https://doi.org/10.1007/s13280-016-0863-9
Lund, M., Stiegler, C., Abermann, J., Citterio, M., Hansen, B., & van As, D. (2017). Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland. Ambio, 46(Suppl. 1), 81-93. https://doi.org/10.1007/s13280-016-0867-5
Nielsen, C. S., Michelsen, A., Ambus, P., Deepagoda, T. K. K. C., & Elberling, B. (2017). Linking rhizospheric CH4 oxidation and net CH4 emissions in an arctic wetland based on 13CH4 labeling of mesocosms. Plant and Soil, 412(1-2), 201–213. https://doi.org/10.1007/s11104-016-3061-4
Nielsen, C. S., Michelsen, A., Strobel, B. W., Wulff, K., Banyasz, I., & Elberling, B. (2017). Correlations between substrate availability, dissolved CH4, and CH4 emissions in an arctic wetland subject to warming and plant removal. Journal of Geophysical Research, 122(3), 645-660. https://doi.org/10.1002/2016JG003511
Nielsen, L., Bendixen, M., Kroon, A., Hede, M. U., Clemmensen, L. B., Weβling, R., & Elberling, B. (2017). Sea-level proxies in Holocene raised beach ridge deposits (Greenland) revealed by ground-penetrating radar. Scientific Reports, 7, [ 46460 ]. https://doi.org/10.1038/srep46460
Overeem, I., Hudson, B. D., Syvitski, J. P. M., Mikkelsen, A. B., Hasholt, B., van den Broeke, M. R., ... Morlighem, M. (2017). Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nature Geoscience, 10(11), 859-863. https://doi.org/10.1038/NGEO3046
Pedersen, E. P., Elberling, B., & Michelsen, A. (2017). Seasonal variations in methane fluxes in response to summer warming and leaf litter addition in a subarctic heath ecosystem. Journal of Geophysical Research: Biogeosciences, 122(8), 2137-2153. https://doi.org/10.1002/2017JG003782
Pereira, L. S. F., Pedrotti, M. F., Enders, M. S. P., Albers, C. N., Pereira, J. S. F., & Flores, E. M. M. (2017). Multitechnique Determination of Halogens in Soil after Selective Volatilization Using Microwave-Induced Combustion. Analytical Chemistry, 89(1), 980-987. https://doi.org/10.1021/acs.analchem.6b04300
Pirk, N., Mastepanov, M., López-Blanco, E., Christensen, L., Christiansen, H. H., Hansen, B., ... Christensen, T. R. (2017). Toward a statistical description of methane emissions from arctic wetlands. Ambio, 46(Suppl. 1), 70-80. https://doi.org/10.1007/s13280-016-0893-3
Prevéy, J., Vellend, M., Rüger, N., Hollister, R. D., Bjorkman, A. D., Myers-Smith, I. H., ... Rixen, C. (2017). Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Global Change Biology, 23(7), 2660-2671. https://doi.org/10.1111/gcb.13619
Ravn, N. M. R., Elberling, B., & Michelsen, A. (2017). The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems. Plant and Soil, 419(1-2), 201-218. https://doi.org/10.1007/s11104-017-3322-x
Ravn, N. R., Ambus, P. L., & Michelsen, A. (2017). Impact of decade-long warming, nutrient addition and shading on emission and carbon isotopic composition of CO2 from two subarctic dwarf shrub heaths. Soil Biology & Biochemistry, 111, 15-24. https://doi.org/10.1016/j.soilbio.2017.03.016
Ribeiro, S., Sejr, M. K., Limoges, A., Heikkilä, M., Andersen, T. J., Tallberg, P., ... Rysgaard, S. (2017). Sea ice and primary production proxies in surface sediments from a High Arctic Greenland fjord: spatial distribution and implications for palaeoenvironmental studies. Ambio, 46(Suppl. 1), 106-118. https://doi.org/10.1007/s13280-016-0894-2
Rousk, K., & Michelsen, A. (2017). Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming. Global Change Biology, 23(4), 1552-1563. https://doi.org/10.1111/gcb.13418
Rousk, K., Degboe, J., Michelsen, A., Bradley, R., & Bellenger, J-P. (2017). Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytologist, 214(1), 97-107. https://doi.org/10.1111/nph.14331
Rousk, K., Pedersen, P. A., Dyrnum, K., & Michelsen, A. (2017). The interactive effects of temperature and moisture on nitrogen fixation in two temperate-arctic mosses. Theoretical and Experimental Plant Physiology, 29(1), 25-36. https://doi.org/10.1007/s40626-016-0079-1
Rousk, K., Sørensen, P. L., & Michelsen, A. (2017). Nitrogen fixation in the High Arctic: a source of ‘new’ nitrogen? Biogeochemistry, 136(2), 213-222. https://doi.org/10.1007/s10533-017-0393-y
Schmidt, N. M., Hardwick, B., Gilg, O., Høye, T. T., Krogh, P. H., Meltofte, H., ... Roslin, T. (2017). Interaction webs in arctic ecosystems: determinants of arctic change? Ambio, 46(Suppl. 1), 12-25. https://doi.org/10.1007/s13280-016-0862-x
Schollert, M., Kivimäenpää, M., Michelsen, A., Blok, D., & Rinnan, R. (2017). Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming. Annals of Botany, 119(3), 433-445. https://doi.org/10.1093/aob/mcw237
Smith, J. A., Andersen, T. J., Shortt, M., Gaffney, A. M., Truffer, M., Stanton, T. P., ... Vaughan, D. G. (2017). Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature, 541(7635), 77-80. https://doi.org/10.1038/nature20136
Tiiva, P., Tang, J., Michelsen, A., & Rinnan, R. (2017). Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem. Science of the Total Environment, 580, 1056-1067. https://doi.org/10.1016/j.scitotenv.2016.12.060
Watanabe, T., Matsuoka, N., Christiansen, H. H., & Cable, S. (2017). Soil Physical and Environmental Conditions Controlling Patterned-Ground Variability at a Continuous Permafrost Site, Svalbard. Permafrost and Periglacial Processes, 28(2), 433-445. https://doi.org/10.1002/ppp.1924
Weijers, S., Buchwal, A., Blok, D., Loeffler, J., & Elberling, B. (2017). High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert. Global Change Biology, 23(11), 5006-5020. https://doi.org/10.1111/gcb.13747
Weiss, N., Faucherre, S., Lampiris, N., & Wojcik, R. (2017). Elevation-based upscaling of organic carbon stocks in High-Arctic permafrost terrain: a storage and distribution assessment for Spitsbergen, Svalbard. Polar Research, 36(1), [1400363]. https://doi.org/10.1080/17518369.2017.1400363
Westergaard-Nielsen, A., Lund, M., Pedersen, S. H., Schmidt, N. M., Klosterman, S., Abermann, J., & Hansen, B. (2017). Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013. Ambio, 46(Suppl. 1), 39-52. https://doi.org/10.1007/s13280-016-0864-8
Xia, J., McGuire, A. D., Lawrence, D., Burke, E., Chen, G., Chen, X., ... Luo, Y. (2017). Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region. Journal of Geophysical Research: Earth Surface, 122(2), 430-446. https://doi.org/10.1002/2016JG003384
Peer-reviewed international papers
Blok, D., Elberling, B., & Michelsen, A. (2016). Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems, 19(1), 155-169. https://doi.org/10.1007/s10021-015-9924-3
Cameron, K. A., Stibal, M., Zarsky, J. D., Gözdereliler, E., Schostag, M. D., & Jacobsen, C. S. (2016). Supraglacial bacterial community structures vary across the Greenland ice sheet. F E M S Microbiology Ecology, 92(2). https://doi.org/10.1093/femsec/fiv164
Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., ... Elberling, B., … Michelsen, A., … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104-108. https://doi.org/10.1038/nature20150
Hauptmann, A. L., Markussen, T. N., Stibal, M., Olsen, N. S., Elberling, B., Bælum, J., ... Jacobsen, C. S. (2016). Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Frontiers in Microbiology, 7, [1474]. https://doi.org/10.3389/fmicb.2016.01474
Hollesen, J., Matthiesen, H., Møller, A. B., & Martens, V. V. (2016). Making better use of monitoring data. Conservation and Management of Archaeological Sites, 18(1-3), 116-125. https://doi.org/10.1080/13505033.2016.1182750
Hollesen, J., Matthiesen, H., Møller, A. B., Westergaard-Nielsen, A., & Elberling, B. (2016). Climate change and the loss of organic archaeological deposits in the Arctic. Scientific Reports, 6, [28690 ]. https://doi.org/10.1038/srep28690
Johnsen, A. R., Jacobsen, O. S., Gudmundsson, L., & Albers, C. N. (2016). Chloroform emissions from arctic and subarctic ecosystems in Greenland and Northern Scandinavia. Biogeochemistry, 130, 53-65. https://doi.org/10.1007/s10533-016-0241-5
Johnsen, A. R., Jacobsen, O. S., Gudmundsson, L., & Albers, C. N. (2016). Erratum to: Chloroform emissions from arctic and subarctic ecosystems in Greenland and Northern Scandinavia (Biogeochemistry, 10.1007/s10533-016-0241-5). Biogeochemistry, 130(1-2), 67. https://doi.org/10.1007/s10533-016-0260-2
Kramshøj, M., Vedel-Petersen, I., Schollert, M., Rinnan, Å., Nymand, J., Ro-Poulsen, H., & Rinnan, R. (2016). Large increases in Arctic biogenic volatile emissions are a direct effect of warming. Nature Geoscience, 9(5), 349-352. https://doi.org/10.1038/NGEO2692
Li, B., Heijmans, M. M. P. D., Berendse, F., Blok, D., Maximov, T., & Sass-Klaassen, U. (2016). The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra. Polar Biology, 39(7), 1245–1255. https://doi.org/10.1007/s00300-015-1847-0
Lindwall, F., Schollert, M., Michelsen, A., Blok, D., & Rinnan, R. (2016). Fourfold higher tundra volatile emissions due to arctic summer warming. Journal of Geophysical Research, 121(3), 895-902. https://doi.org/10.1002/2015JG003295
Lindwall, F., Svendsen, S. S., Nielsen, C. S., Michelsen, A., & Rinnan, R. (2016). Warming increases isoprene emissions from an arctic fen. Science of the Total Environment, 553, 297-304. https://doi.org/10.1016/j.scitotenv.2016.02.111
Mackelprang, R., Saleska, S. R., Jacobsen, C. S., Jansson, J. K., & Taş, N. (2016). Permafrost meta-omics and climate change. Annual Review of Earth and Planetary Sciences, 44, 439-462. https://doi.org/10.1146/annurev-earth-060614-105126
Markussen, T. N., Elberling, B., Winter, C., & Andersen, T. J. (2016). Flocculated meltwater particles control Arctic land-sea fluxes of labile iron. Scientific Reports, 6, [24033]. https://doi.org/10.1038/srep24033
Mikkelsen, A. P. B., Hubbard, A., MacFerrin, M., Box, J. E., Doyle, S. H., Fitzpatrick, A., ... Hasholt, B., … Pettersson, R. (2016). Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention. The Cryosphere, 10(3), 1147-1159. https://doi.org/10.5194/tc-10-1147-2016
Mosbacher, J. B., Kristensen, D. K., Michelsen, A., Stelvig, M., & Schmidt, N. M. (2016). Quantifying muskox plant biomass removal and spatial relocation of nitrogen in a high arctic tundra ecosystem. Arctic, Antarctic, and Alpine Research, 48(2), 229-240. https://doi.org/10.1657/AAAR0015-034
Mosbacher, J. B., Michelsen, A., Stelvig, M., Hendrichsen, D. K., & Schmidt, N. M. (2016). Show me your rump hair and I will tell you what you ate - the dietary history of Muskoxen (Ovibos moschatus) revealed by sequential stable isotope analysis of guard hairs. P L o S One, 11(4), [e0152874]. https://doi.org/10.1371/journal.pone.0152874
Mundra, S., Halvorsen, R., Kauserud, H., Bahram, M., Tedersoo, L., Elberling, B., ... Eidesen, P. B. (2016). Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic. MicrobiologyOpen, 5(5), 856-869. https://doi.org/10.1002/mbo3.375
Ning, W., Tang, J., & Filipsson, H. L. (2016). Long-term coastal openness variation and its impact on sediment grain-size distribution: a case study from the Baltic Sea. Earth Surface Dynamics, 4(4), 773-780. https://doi.org/10.5194/esurf-4-773-2016
Oh, Y., Stackhouse, B., Lau, M. C. Y., Xu, X., Trugman, A. T., Moch, J., ... Jørgensen, C.J., D’Imperio, L., Elberling, B., … Medvigy, D. (2016). A scalable model for methane consumption in arctic mineral soils. Geophysical Research Letters, 43(10), 5143-5150. https://doi.org/10.1002/2016GL069049
Pedersen, S. H., Tamstorf, M. P., Abermann, J., Westergaard-Nielsen, A., Lund, M., Skov, K., ... Sigsgaard, C., Mylius, M.R., Hansen, B.U., …Schmidt, N. M. (2016). Spatiotemporal characteristics of seasonal snow cover in Northeast Greenland from in situ observations. Arctic, Antarctic, and Alpine Research, 48(4), 653-671. https://doi.org/10.1657/AAAR0016-028
Rousk, K., & Michelsen, A. (2016). The Sensitivity of moss-associated nitrogen fixation towards repeated nitrogen input. P L o S One, 11(1), 1-12. [0146655]. https://doi.org/10.1371/journal.pone.0146655
Rousk, K., Michelsen, A., & Rousk, J. (2016). Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments. Global Change Biology, 22(12), 4150-4161. https://doi.org/10.1111/gcb.13296
Rousk, K., Sørensen, P. L., & Michelsen, A. (2016). Nitrogen transfer from four nitrogen-fixer associations to plants and soils. Ecosystems, 19(8), 1491-1504. https://doi.org/10.1007/s10021-016-0018-7
Semenchuk, P. R., Christiansen, C. T., Grogan, P., Elberling, B., & Cooper, E. J. (2016). Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem. Journal of Geophysical Research, 121(5), 1236-1248. https://doi.org/10.1002/2015JG003251
Semenchuk, P. R., Gillespie, M. A. K., Rumpf, S. B., Baggesen, N., Elberling, B., & Cooper, E. J. (2016). High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity. Environmental Research Letters, 11(12), [125006]. https://doi.org/10.1088/1748-9326/11/12/125006
Siewert, M. B., Hugelius, G., Heim, B., & Faucherre, S. (2016). Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta. CATENA, 147, 725-741. https://doi.org/10.1016/j.catena.2016.07.048
Svendsen, S. H., Lindwall, F., Michelsen, A., & Rinnan, R. (2016). Biogenic volatile organic compound emissions along a high arctic soil moisture gradient. Science of the Total Environment, 573, 131-138. https://doi.org/10.1016/j.scitotenv.2016.08.100
Tang, J., Schurgers, G., Valolahti, H. M., Faubert, P., Tiiva, P., Michelsen, A., & Rinnan, R. (2016). Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath. Biogeosciences, 13(24), 6651-6667. https://doi.org/10.5194/bg-13-6651-2016
Tomaškovičová, S., Ingeman-Nielsen, T., Christiansen, A. V., Brandt, I., Dahlin, T., & Elberling, B. (2016). Effect of electrode shape on grounding resistances: Part 2: Experimental results and cryospheric monitoring. Geophysics, 81(1), WA169-WA182. https://doi.org/10.1190/GEO2015-0148.1
Treat, C. C., Jones, M. C., Camill, P., Gallego-Sala, A., Garneau, M., Harden, J. W., ... Kokfelt, U., … Valiranta, M. (2016). Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. Journal of Geophysical Research, 121(1), 78-94. https://doi.org/10.1002/2015JG003061
Wang, W., Rinke, A., Moore, J. C., Ji, D., Cui, X., Peng, S., ... Zhang, W., Sherstiukov, A. B. (2016). Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region. Cryosphere, 10(4), 1721-1737. https://doi.org/10.5194/tc-10-1721-2016
Weiss, N., Blok, D., Elberling, B., Hugelius, G., Jørgensen, C. J., Siewert, M., & Kuhry, P. (2016). Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region. Sedimentary Geology. https://doi.org/10.1016/j.sedgeo.2015.12.004
Winther, M. N., Balslev-Harder, D., Christensen, S., Priemé, A., Elberling, B., Crosson, E., & Blunier, T. (2016). Continuous measurements of nitrous oxide isotopomers during incubation experiments. Biogeosciences, 15, 767-780. https://doi.org/10.5194/bg-2016-258
Peer-reviewed international papers
Blok, D., Weijers, S., Welker, J. M., Cooper, E. J., Michelsen, A., Löffler, J., & Elberling, B. (2015). Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra. Environmental Research Letters, 10(4), [044008]. https://doi.org/10.1088/1748-9326/10/4/044008
Breider, F., & Albers, C. N. (2015). Formation mechanisms of trichloromethyl-containing compounds in the terrestrial environment: A critical review. Chemosphere, 119, 145–154. https://doi.org/10.1016/j.chemosphere.2014.05.080
Cameron K.A., Hagedorn, B., Dieser, M., Christner, B.C., Choquette, K., Sletten, R., Crump, B., Kellogg, C., & Junge, K. (2015). Diversity and potential sources of microbiota associated with snow on western portions of the Greenland ice sheet. Environmental Microbiology 17, 594-609. https://doi.org/10.1111/1462-2920.12446
Christiansen, J. R., Barrera Romero, A. J., Jørgensen, N. O. G., Glaring, M. A., Jørgensen, C. J., Berg, L. K., & Elberling, B. (2015). Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry, 122(1), 15-33. https://doi.org/10.1007/s10533-014-0026-7
Convey, P., Abbandonato, H., Bergan, F., Beumer, L. T., Biersma, E. M., Bråthen, V. S., … D'Imperio, L.,... Coulson, S. J. (2015). Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. Journal of Thermal Biology, 54, 111-117. https://doi.org/10.1016/j.jtherbio.2014.07.009
Deepagoda Thuduwe Kankanamge Kelum, C., & Elberling, B. (2015). Characterization of diffusivity-based oxygen transport in Arctic organic soil. European Journal of Soil Science, 66(6), 983-991. https://doi.org/10.1111/ejss.12293
Doetsch, J., Ingeman-Nielsen, T., Christiansen, A. V., Fiandaca, G., Auken, E., & Elberling, B. (2015). Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution. Cold Regions Science and Technology, 119, 16–28. https://doi.org/10.1016/j.coldregions.2015.07.002
Hollesen, J., & Matthiesen, H. (2015). The influence of soil moisture, temperature and oxygen on the oxic decay of organic archaeological deposits. Archaeometry, 57(2), 362-377. https://doi.org/10.1111/arcm.12094
Hollesen, J., Buchwal, A., Rachlewicz, G., Hansen, B., Hansen, M. O., Stecher, O., & Elberling, B. (2015). Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. Global Change Biology, 21(6), 2410-2423. https://doi.org/10.1111/gcb.12913
Hollesen, J., Matthiesen, H., Møller, A. B., & Elberling, B. (2015). Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nature Climate Change, 5(6), 574-578. https://doi.org/10.1038/nclimate2590
Hultman, J., Waldrop, M. P., Mackelprang, R., David, M. M., McFarland, J., Blazewicz, S. J., ... Jansson, J. (2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521(7551), 208-212. https://doi.org/10.1038/nature14238
Jammet, M. M., Crill, P., Dengel, S., & Friborg, T. (2015). Large methane emissions from a subarctic lake during spring thaw: mechanisms and landscape significance. Journal of Geophysical Research: Earth Surface, 120(11), 2289-2305. https://doi.org/10.1002/2015JG003137
Jørgensen, C. J., Johansen, K. M. L., Westergaard-Nielsen, A., & Elberling, B. (2015). Net regional methane sink in high artic soils of northeast Greenland. Nature Geoscience, 8, 20-23. https://doi.org/10.1038/NGEO2305
Langer, M., Westermann, S., Anthony, K. W., Wischnewski, K., & Boike, J. (2015). Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta . Biogeosciences, 12, 977-990. https://doi.org/10.5194/bg-12-977-2015
Lindwall, F., Faubert, P., & Rinnan, R. (2015). Diel variation of biogenic volatile organic compound emissions: a field study in the Sub, Low and High Arctic on the effect of temperature and light. P L o S One, 10(4), [e0123610]. https://doi.org/10.1371/journal.pone.0123610
Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S. A., Wilmking, M., Hallinger, M., Blok, D., ... Vellend, M. (2015). Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change, 5, 887-891. https://doi.org/10.1038/nclimate2697
Myers-Smith, I., Hallinger, M., Blok, D., Sass-Klaassen, U., Rayback, S., Weijers, S., ... Wilmking, M. (2015). Methods for measuring arctic and alpine shrub growth: a review. Earth-Science Reviews, 140, 1-13. https://doi.org/10.1016/j.earscirev.2014.10.004
Nauta, A. L., Heijmans, M. P. D., Blok, D., Limpens, J., Elberling, B., Gallagher, A., ... Berendse, F. (2015). Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nature Climate Change, 5, 67-70. https://doi.org/10.1038/NCLIMATE2446
Nunn, B. L., Slattery, K. V., Cameron, K. A., Timmins-Schiffman, E., & Junge, K. (2015). Proteomics of Colwellia psychrerythraea at subzero temperatures – a life with limited movement, flexible membranes and vital DNA repair. Environmental Microbiology, 17, 2319–2335. https://doi.org/10.1111/1462-2920.12691
Palmtag, J., Hugelius, G., Lashchinskiy, N., Tamstorf, M. P., Richter, A., Elberling, B., & Kuhry, P. (2015). Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arctic, Antarctic, and Alpine Research, 47(1), 71-88. https://doi.org/10.1657/AAAR0014-027
Pedersen, S. H., Liston, G. E., Tamstorf, M. P., Westergaard-Nielsen, A., & Schmidt, N. M. (2015). Quantifying episodic snowmelt events in Arctic ecosystems. Ecosystems, 18(5), 839-856. https://doi.org/10.1007/s10021-015-9867-8
Petrescu, A. M. R., Lohila, A., Tuovinen, J-P., Baldocchi, D. D., Desai, A. R., Roulet, N. T., ... Friborg, T., … Cescatti, A. (2015). The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4594-4599. https://doi.org/10.1073/pnas.1416267112
Rousk, K., Sørensen, P. L., Lett, S., & Michelsen, A. (2015). Across-habitat comparison of diazotroph activity in the subarctic. Microbial Ecology, 69(4), 778-787. https://doi.org/10.1007/s00248-014-0534-y
Schollert, M., Kivimäenpää, M., Valolahti, H. M., & Rinnan, R. (2015). Climate change alters leaf anatomy, but has no effects on volatile emissions from arctic plants. Plant, Cell and Environment, 38(10), 2048-2060. https://doi.org/10.1111/pce.12530
Schostag, M. D., Stibal, M., Jacobsen, C. S., Bælum, J., Tas, N., Elberling, B., ... Priemé, A. (2015). Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Frontiers in Microbiology, 6, [399]. https://doi.org/10.3389/fmicb.2015.00399
Semenchuk, P. R., Elberling, B., Amtorp, C., Winkler, J., Rumpf, S., Michelsen, A., & Cooper, E. J. (2015). Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry, 124(1), 81-94. https://doi.org/10.1007/s10533-015-0082-7
Sondergaard, J., Tamstorf, M., Elberling, B., Larsen, M. M., Mylius, M. R., Lund, M., ... Riget, F. (2015). Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods. Science of the Total Environment, 514, 83-91. https://doi.org/10.1016/j.scitotenv.2015.01.097
Stibal, M., Gozdereliler, E., Cameron, K. A., E. Box, J., Stevens, I. T., Gokul, J. K., ... Jacobsen, C. S. (2015). Microbial abundance in surface ice on the Greenland Ice Sheet. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00225
Stibal, M., Nielsen, M. S., Cameron, K. A., Hansen, L. H., Chandler, D. M., Wadham, J. L., & Jacobsen, C. S. (2015). Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environmental Microbiology Reports, 7(2), 293-300. https://doi.org/10.1111/1758-2229.12246
Swindles, G. T., Amesbury, M. J., Turner, T. E., Carrivick, J. L., Woulds, C., Raby, C., ... Kokfelt, U., … Holden, J. (2015). Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands. Palaeogeography, Palaeoclimatology, Palaeoecology - An International Journal for the Geo-Sciences, 424, 111-122. https://doi.org/10.1016/j.palaeo.2015.02.004
Swindles, G. T., Morris, P. J., Mullan, D., Watson, E. J., Turner, T. E., Roland, T. P., ... Kokfelt, U.,… Galloway, J. M. (2015). The long-term fate of permafrost peatlands under rapid climate warming. Scientific Reports, 5, [17951]. https://doi.org/10.1038/srep17951
Valolahti, H. M., Kivimäenpää, M., Faubert, P., Michelsen, A., & Rinnan, R. (2015). Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions. Global Change Biology, 21(9), 3478–3488. https://doi.org/10.1111/gcb.12953
Vedel-Petersen, I., Schollert, M., Nymand, J., & Rinnan, R. (2015). Volatile organic compound emission profiles of four common arctic plants. Atmospheric Environment, 120, 117-126. https://doi.org/10.1016/j.atmosenv.2015.08.082
Vonk, J. E., Tank, S. E., Bowden, W. B., Laurion, I., Vincent, W. F., Alekseychik, P., ... Jammet, M., … Wickland, K. P. (2015). Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences, 12(23), 7129-7167. https://doi.org/10.5194/bg-12-7129-2015
Westergaard-Nielsen, A., Bjørnsson, A. B., Jepsen, M. R., Stendel, M., Hansen, B., & Elberling, B. (2015). Greenlandic sheep farming controlled by vegetation response today and at the end of the 21st Century. Science of the Total Environment, 512–513, 672-681. https://doi.org/10.1016/j.scitotenv.2015.01.039
Westermann, S., Elberling, B., Pedersen, S. H., Stendel, M., Hansen, B., & Liston, G. E. (2015). Future permafrost conditions along environmental gradients in Zackenberg, Greenland. The Cryosphere, 9(2), 719-735. https://doi.org/10.5194/tc-9-719-2015
Westermann, S., Østby, T. I., Gisnås, K., Schuler, T. V., & Etzelmuller, B. (2015). A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data. The Cryosphere, 9(3), 1303-1319. https://doi.org/10.5194/tc-9-1303-2015
Peer-reviewed international papers
Blikra, L. H., & Christiansen, H. H. (2014). A field-based model of permafrost-controlled rockslide deformation in northern Norway. Geomorphology, 208, 34-49. https://doi.org/10.1016/j.geomorph.2013.11.014
Edwards, A., Mur, L. A. J., Girdwood, S. E., Anesio, A. M., Stibal, M., Rassner, S. M. E., ... Sattler, B. (2014). Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. F E M S Microbiology Reviews, 89(2), 222-237. https://doi.org/10.1111/1574-6941.12283
Hauptmann, A. L., Stibal, M., Bælum, J., Sicheritz-Ponten, T., Brunak, S., Bowman, J. S., ... Blom, N. (2014). Bacterial diversity in snow on North Pole ice floes. Extremophiles, 18(6), 945-951. https://doi.org/10.1007/s00792-014-0660-y
Hipp, T., Etzelmuller, B., & Westermann, S. (2014). Permafrost in alpine rock faces from Jotunheimen and Hurrungane, Southern Norway. Permafrost and Periglacial Processes, 25(1), 1-13. https://doi.org/10.1002/ppp.1799
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C-L., … Elberling, B., ... Kuhry, P. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 6573-6593. https://doi.org/10.5194/bg-11-6573-2014
Ingimarsdottir, M., Michelsen, A., Ripa, J., & Hedlund, K. (2014). Food sources of early colonising arthropods: the importance of allochthonous input. Pedobiologia, 57(1), 21-26. https://doi.org/10.1016/j.pedobi.2013.09.004
Jansson, J., & Tas, N. (2014). The microbial ecology of permafrost. Nature Reviews. Microbiology, 12, 414-425. https://doi.org/10.1038/nrmicro3262
Jore, S., Vanwambeke, S.O., Viljugrein, H., Isaksen, K., Kristoffersen, A.B., Woldehiwet, Z., Johansen, B., Brun, E., Brun-Hansen, H., Westermann, S., Larsen, I-L., Ytrehus, B., & Hofshagen, M. (2014) Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasites & Vectors, 7, 1.
10.1186/1756-3305-7-11
Lawson, E.C., Wadham, J.L., Tranter, M., Stibal, M., Lis, G.P., Butler, C.E.H., Laybourn-Parry, J., Nienow, P., Chandler, D., & Dewsbury, P. (2014). Greenland ice sheet exports labile organic carbon to the Arctic oceans. Biogeosciences, 11, 4015-4028.
https://doi.org/10.5194/bg-11-4015-2014
Lett, S., & Michelsen, A. (2014). Seasonal variation in nitrogen fixation and effects of climate change in a subarctic heath. Plant and Soil, 379(1), 193-204. https://doi.org/10.1007/s11104-014-2031-y
Loisel, J., Yu, Z., Beilman, D. W., Camill, P., Alm, J., Amesbury, M. J.,… Kokfelt, U., ... Zhou, W. (2014). A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene, 24(9), 1028-1042. https://doi.org/10.1177/0959683614538073
Lund, M., Hansen, B. U., Pedersen, S. H., Stiegler, C., & Tamstorf, M. P. (2014). Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000-2010. Tellus B: Chemical and Physical Meteorology, 66. https://doi.org/10.3402/tellusb.v66.21631
Luërs, J., Westermann, S., Piel, K., & Boike, J. (2014). Annual CO2 budget and seasonal CO2 exchange signals at a high Arctic permafrost site on Spitsbergen, Svalbard archipelago. Biogeosciences, 11(22), 6307-6322. https://doi.org/10.5194/bg-11-6307-2014
Luyssaert, S., Jammet, M. M., Stoy, P. C., Estel, S., Pongratz, J., Ceschia, E., ... Dolman, A. J. (2014). Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 4, 389-393. https://doi.org/10.1038/NCLIMATE2196
Markussen, T. N., & Andersen, T. J. (2014). Flocculation and floc break-up related to tidally induced turbulent shear in a low-turbidity, microtidal estuary. Journal of Sea Research, 89, 1-11. https://doi.org/10.1016/j.seares.2014.02.001
Matthiesen, H., Jensen, J. B., Gregory, D., Hollesen, J., & Elberling, B. (2014). Degradation of archaeological wood under freezing and thawing conditions - effects of permafrost and climate change. Archaeometry, 56(3), 479-495. https://doi.org/10.1111/arcm.12023
Prestat, E., David, M. M., Hultman, J., Tas, N., Lamendella, R., Dvornik, J., ... Jansson, J. (2014). FOAM (functional ontology assignments for metagenomes): a hidden markov model (HMM) database with environmental focus. Nucleic Acids Research, 42(19), [e145]. https://doi.org/10.1093/nar/gku702
Reuss, N. S., Hamerlik, L., Velle, G., Michelsen, A., Pedersen, O., & Brodersen, K. P. (2014). Microhabitat influence on chironomid community structure and stable isotope signatures in West Greenland lakes. Hydrobiologia, 730(1), 59-77. https://doi.org/10.1007/s10750-014-1821-9
Rinnan, R., Steinke, M., McGenity, T., & Loreto, F. (2014). Plant volatiles in extreme terrestrial and marine environments. Plant, Cell and Environment, 37(8), 1776-1789. https://doi.org/10.1111/pce.12320
Schollert, M., Burchard, S., Faubert, P., Michelsen, A., & Rinnan, R. (2014). Biogenic volatile organic compound emissions in four vegetation types in high arctic Greenland. Polar Biology, 37(2), 237-249. https://doi.org/10.1007/s00300-013-1427-0
Schädel, C., Schuur, E. A. G., Bracho, R., Elberling, B., Knoblauch, C., Lee, H., ... Turetsky, M. T. (2014). Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology, 20(2), 641-652. https://doi.org/10.1111/gcb.12417
Strandberg, G., Kjellstrom, E., Poska, A., Wagner, S., Gaillard, M. -J., Trondman, A. -K., ... Sugita, S. (2014). Regional climate model simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Climate of the Past, 10(2), 661-680. https://doi.org/10.5194/cp-10-661-2014
Westermann, S., Elberling, B., Pedersen, S. H., Stendel, M., Hansen, B. U., & Liston, G. E. (2014). Future permafrost conditions along environmental gradients in Zackenberg, Greenland. The Cryosphere Discussions, 8, 3907-3948. https://doi.org/10.5194/tcd-8-3907-2014
Peer-reviewed international papers
Albers, C. N., Jensen, A., Bælum, J., & Jacobsen, C. S. (2013). Inhibition of DNA polymerases used in Q-PCR by structurally different soil-derived humic substances. Geomicrobiology Journal, 30(8), 675-681. https://doi.org/10.1080/01490451.2012.758193
Albert, K. R., Boesgaard, K., Ro-Poulsen, H., Mikkelsen, T. N., Andersen, S., & Pilegaard, K. (2013). Antagonism between elevated CO2, nighttime warming, and summer drought reduces the robustness of PSII performance to freezing events. Environmental and Experimental Botany, 93, 1-12. https://doi.org/10.1016/j.envexpbot.2013.03.008
Bellas, C. M., Anesio, A. M., Telling, J., Stibal, M., Tranter, M., & Davis, S. (2013). Viral impacts on bacterial communities in Arctic cryoconite. Environmental Research Letters, 8(4), [045021]. https://doi.org/10.1088/1748-9326/8/4/045021
Boesgaard, K. S., Mikkelsen, T. N., Ro-Poulsen, H., & Ibrom, A. (2013). Reduction of molecular gas diffusion through gaskets in leaf gas exchange cuvettes by leaf-mediated pores. Plant, Cell and Environment, 36(7), 1352-1362. https://doi.org/10.1111/pce.12064
Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K.,Grigoriev, M., Grüber, M., Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E.-M., Stoof, G., Westermann, S., Wischnewski, K., Wille, C., & Huberten, H.-W. (2013). Baseline characteristics of climate, permafrost and land cover from a new permafrost observatory in Lena River Delta, Siberia (1998–2011). Biogeosciences, 10, 2105–2128. https://doi.org/10.5194/bg-10-2105-2013
Breider, F., Albers, C. N., & Hunkeler, D. (2013). Assessing the role of trichloroacetyl-containing compounds in the natural formation of chloroform using stable carbon isotopes analysis. Chemosphere, 90, 441–448. https://doi.org/10.1016/j.chemosphere.2012.07.058
Callaghan, T. V., Jonasson, C., Thierfelder, T., Yang, Z., Hedenas, H., Johansson, M., ...Michelsen, A., ... Sloan, V. L. (2013). Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1624), 1-18. https://doi.org/10.1098/rstb.2012.0488
Campioli, M., Schmidt, N. M., Albert, K. R., Leblans, N., Ro-Poulsen, H., & Michelsen, A. (2013). Does warming affect growth rate and biomass production of shrubs in the High Arctic? Plant Ecology, 214(8), 1049-1058. https://doi.org/10.1007/s11258-013-0230-x
Christiansen, H. H., Humlum, O., & Eckerstorfer, M. (2013). Central Svalbard 2000-2011 meteorological dynamics and periglacial landscape response. Arctic, Antarctic, and Alpine Research, 45(1), 6-18. https://doi.org/10.1657/1938-4246-45.1.6
Dengel, S., Zona, D., Sachs, T., Aurela, M., Jammet, M. M., Parmentier, F. J. W., ... Vesala, T. (2013). Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands. Biogeosciences, 10(12), 8185-8200. https://doi.org/10.5194/bg-10-8185-2013
Dennis, P. G., Sparrow, A. D., Gregorich, E. G., Novis, P. M., Elberling, B., Greenfield, L. G., & Hopkins, D. W. (2013). Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil. Antarctic Science, 25(1), 55-61. https://doi.org/10.1017/S0954102012000855
Eckerstorfer, M., Christiansen, H.H., Rubensdotter, L.,& Vogel, S. (2013). The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard. The Cryosphere, 7 1361–1374. https://doi.org/10.5194/tc-7-1361-2013
Elberling, B., Michelsen, A., Schädel, C., Schuur, E. A. G., Christiansen, H. H., Berg, L., ... Sigsgaard, C. (2013). Long-term CO2 production following permafrost thaw. Nature Climate Change, 3, 890-894. https://doi.org/10.1038/NCLIMATE1955
Gisnås, K., Etzelmüller, B., Farbrot, H., Schuler, T., & Westermann, S. (2013). CryoGRID 1.0: Permafrost distribution in Norway estimated by a spatial numerical model. Permafrost and Periglacial Processes, 24, 2–19. https://doi.org/10.1002/ppp.1765
Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., ... Yu, Z. (2013). A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth System Science Data, 5(2), 393-402. https://doi.org/10.5194/essd-5-393-2013
Hugelius, G., Tarnocai, C., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., ... Yu, Z. (2013). Short communication: a new dataset for estimating organic carbon storage to 3m depth in soils of the northern circumpolar permafrost region. Earth System Science Data, 6, 73-93. https://doi.org/10.5194/essdd-6-73-2013
Kokfelt, U., & Muscheler, R. (2013). Solar forcing of climate during the last millennium recorded in lake sediments from northern Sweden. Holocene, 23(3), 447-452. https://doi.org/10.1177/0959683612460781
Langer, M., Westermann, S., Heikenfeld, M., Dorn, W., & Boike, J. (2013). Satelite-bassed modeling of permafrost temperatures in a tundra lowland landscape. Remote Sensing of Environment, 135, 12–14. https://doi.org/10.1016/j.rse.2013.03.011
Lilleøren, K.S., Etzelmüller, B., Gärtner-Roer, I., Kääb, A., Westermann, S.,& Guðmundsson, Á. (2013). The distribution, thermal characteristics and dynamics of permafrost in Tröllaskagi, Northern Iceland, as inferred from the distribution of rock glaciers and ice-cored moraines. Permafrost and Periglacial Processes 24, 322–335. https://doi.org/10.1002/ppp.1792
Markussen, T. N., & Andersen, T. J. (2013). A simple method for calculating in situ floc settling velocities based on effective density functions. Marine Geology, 344, 10-18. https://doi.org/10.1016/j.margeo.2013.07.002
Marushchak, M. E., Kiepe, I., Biasi, C., Elsakov, V., Friborg, T., Johansson, P. T., ... Martikainen, P. J. (2013). Carbon dioxide balance of subarctic tundra from plot to regional scales. Biogeosciences, 10(1), 437-452. https://doi.org/10.5194/bg-10-437-2013
Mastepanov, M., Sigsgaard, C., Tagesson, H. T., Ström, L., Tamstorf, M. P., Lund, M., & Christensen, T. R. (2013). Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences, 10(7), 5139-5158. https://doi.org/10.5194/bg-10-5139-2013
Mikkelsen, A. P. B., Hasholt, B., Knudsen, N. T., & Nielsen, M. H. (2013). Jökulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland. Hydrology Research, 44(1), 58-67. https://doi.org/10.2166/nh.2012.165
Mosbacher, J. B., Schmidt, N. M., & Michelsen, A. (2013). Impacts of eriophyoid gall mites on arctic willow in a rapidly changing Arctic. Polar Biology, 36(12), 1735-1748. https://doi.org/10.1007/s00300-013-1393-6
Pedersen, J. B. T., Kroon, A., Jakobsen, B. H., Mernild, S. H., Andersen, T. J., & Andresen, C. S. (2013). Fluctuations of sediment accumulation rates in front of an Arctic delta in Greenland. Holocene, 23(6), 860-868. https://doi.org/10.1177/0959683612474480
Reuss, N. S., Hamerlik, L., Velle, G., Michelsen, A., Pedersen, O., & Brodersen, K. P. (2013). Stable isotopes reveal that chironomids occupy several trophic levels within West Greenland lakes: implications for food web studies. Limnology and Oceanography, 58(3), 1023-1034. https://doi.org/10.4319/lo.2013.58.3.1023
Rickelt, L. F., Jensen, L. A., Walpersdorf, E. C., Elberling, B., Glud, R. N., & Kühl, M. (2013). An optode sensor array for long term in situ Oxygen measurements in soil and sediment. Journal of Environmental Quality, 42(4), 1267-1273. https://doi.org/10.2134/jeq2012.0334
Rinnan, R., Gierth, D., Bilde, M., Rosenørn, T., & Michelsen, A. (2013). Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting. Frontiers in Microbiology, 4, [224]. https://doi.org/10.3389/fmicb.2013.00224
Rinnan, R., Michelsen, A., & Bååth, E. (2013). Fungi benefit from two decades of increased nutrient availability in tundra heath soil. P L o S One, 8(2), 1-10. [e56532]. https://doi.org/10.1371/journal.pone.0056532
Rinnan, R., Saarnio, S., Haapala, J. K., Mörsky, S. K., Martikainen, P. J., Silvola, J., & Holopainen, T. (2013). Boreal peatland ecosystems under enhanced UV-B radiation and elevated tropospheric ozone concentration. Environmental and Experimental Botany, 90, 43-52. https://doi.org/10.1016/j.envexpbot.2012.10.009
Semenchuk, P. R., Elberling, B., & Cooper, E. J. (2013). Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard. Ecology and Evolution, 3(8), 2586-2599. https://doi.org/10.1002/ece3.648
Tagesson, H. T., Mastepanov, M., Mölder, M., Tamstorf, M. P., Eklundh, L., Smith, B., ... Sigsgaard, C., Friborg, T., ... Ström, L. (2013). Modelling of growing season methane fluxes in a high-Arctic wet tundra ecosystem 1997-2010 using in situ and high-resolution satellite data. Tellus B: Chemical and Physical Meteorology, 65, [19722]. https://doi.org/10.3402/tellusb.v65i0.19722
Watanabe, T., Matsuoka, N., & Christiansen, H.H. (2013). Ice- and soil wedge dynamics in Kapp Linné area, Svalbard, investigated by two- and three-dimensional GPR and accelaration regimes. Permafrost and Periglacial Processes, 24, 39–55. https://doi.org/10.1002/ppp.1767
Westermann, S., Schuler, T.V., Gisnås, K., & Etzelmüller, B. (2013). Transient thermal modelling of permafrost conditions in Southern Norway. The Cryosphere, 7, 719–739. https://doi.org/10.5194/tc-7-719-2013
Westergaard-Nielsen, A., Lund, M., Hansen, B. U., & Tamstorf, M. P. (2013). Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area. I S P R S Journal of Photogrammetry and Remote Sensing, 86, 89-99. https://doi.org/10.1016/j.isprsjprs.2013.09.006
Zarsky, J. D., Stibal, M., Hodson, A., Sattler, B., Schostag, M., Hansen, L. H., ... Psenner, R. (2013). Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidizing archaea. Environmental Research Letters, 8(3), [035044]. https://doi.org/10.1088/1748-9326/8/3/035044
Peer-reviewed international papers
Andresen, C. S., Straneo, F., Ribergaard, M. H., Bjørk, A. A., Andersen, T. J., Kuijpers, A., ... Ahlstrøm, A. P. (2012). Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nature Geoscience, 5, 37-41. https://doi.org/10.1038/NGEO1349
Campioli, M., Leblans, N., & Michelsen, A. (2012). Twenty-two years of warming, fertilisation and shading of subarctic heath shrubs promote secondary growth and plasticity but not primary growth. P L o S One, 7(4), [e34842]. https://doi.org/10.1371/journal.pone.0034842
Christensen, T., Jackowicz-Korczynski, M., Aurela, M., Crill, P., Heliasz, M., Mastepanov, M., & Friborg, T. (2012). Monitoring the multi-year carbon balance of a subarctic palsa mire with micrometeorological techniques. Ambio, 41(3 Suppl.), 207-217. https://doi.org/10.1007/s13280-012-0302-5
Christiansen, C. T., Schmidt, N. M., & Michelsen, A. (2012). High arctic dry heath CO2 exchange during the early cold season. Ecosystems, 15(7), 1083-1092. https://doi.org/10.1007/s10021-012-9569-4
Christiansen, C. T., Svendsen, S. H., Schmidt, N. M., & Michelsen, A. (2012). High arctic heath soil respiration and biogeochemical dynamics during summer and autumn freeze-in – effects of long-term enhanced water and nutrient supply. Global Change Biology, 18(10), 3224-3236. https://doi.org/10.1111/j.1365-2486.2012.02770.x
Elmendorf, S. C., Henry, G. H. R., Walker, X., Hollister, R. D., May, J. L., Björk, R. G., ... Michelsen, A … Schmidt, N. M. (2012). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2, 453–457. https://doi.org/10.1038/NCLIMATE1465
Hollesen , J., Jensen, J. B., Matthiesen, H., Elberling, B., Lange, H., & Meldgaard, M. (2012). The future preservation of a permanently frozen kitchen midden in Western Greenland. Conservation and Management of Archaeological Sites, 14(1-4), 159-168. https://doi.org/10.1179/1350503312Z.00000000013
Jørgensen, C. J., & Elberling, B. (2012). Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil. Soil Biology & Biochemistry, 53, 9-17. https://doi.org/10.1016/j.soilbio.2012.05.005
Keuper, F., Parmentier, F-J., Blok, D., van Bodegom, P., Dorrepaal, E., Van Hal, J. R., ... Aerts, R. (2012). Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra. Ambio, 41(Suppl. 3), 269-280. https://doi.org/10.1007/s13280-012-0305-2
Larsen, K. S., Michelsen, A., Jonasson, S. E., Beier, C., & Grogan, P. (2012). Nitrogen uptake during fall, winter and spring differs among plant functional groups in a subarctic heath ecosystem. Ecosystems, 15(6), 927-939. https://doi.org/10.1007/s10021-012-9555-x
Lund, M., Falk, J. M., Friborg, T., Mbufong, H. N., Sigsgaard, C., Søgaard, H., & Tamstorf, M. P. (2012). Trends in CO2 exchange in a high Arctic tundra heath, 2000-2010. Journal of Geophysical Research, 117(G2). https://doi.org/10.1029/2011JG001901
Masson-Delmotte, V., Swingedouw, D., Landais, A., Seidenkrantz, M-S., Gauthier, E., Bichet, V., ... Vinther, B. M. (2012). Greenland climate change: from the past to the future. Wiley Interdisciplinary Reviews. Climate Change, 3(5), 427-449. https://doi.org/10.1002/wcc.186
Michelsen, A., Rinnan, R., & Jonasson, S. E. (2012). Two decades of experimental manipulations of heaths and forest understory in the subarctic. Ambio, 41(Suppl. 3), 218-230. https://doi.org/10.1007/s13280-012-0303-4
Schmidt, N. M., Kristensen, D. K., Michelsen, A., & Bay, C. (2012). High arctic plant community responses to a decade of ambient warming. Biodiversity, 13(3-4), 191-199. https://doi.org/10.1080/14888386.2012.712093
Stibal, M., Bælum, J., Holben, W. E., Sørensen, S. R., Jensen, A., & Jacobsen, C. S. (2012). Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet. Applied and Environmental Microbiology, 78(15), 5070-5076. https://doi.org/10.1128/AEM.00400-12
Stibal, M., Šabacká, M., & Žárský, J. (2012). Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 5(11), 771-774. https://doi.org/10.1038/ngeo1611